www.tomsmath.com
Find the partial fraction decomposition of $f(x)=\frac{3 x+1}{(x-1) \cdot\left(x^{2}+1\right)}$

1) Because the denominator is a product of a linear factor, which is $x-1$, and a an irreducible quadratic, you can write the setup below.

$$
\frac{3 x+1}{(x-1)\left(x^{2}+1\right)}=\frac{\mathrm{A}}{x-1}+\frac{\mathrm{Bx}+\mathrm{C}}{x^{2}+1}
$$

2) Now multiply both sides by $(x-1)\left(x^{2}+1\right)$ to clear the denominators

$$
\begin{aligned}
(x-1) \cdot\left(x^{2}+1\right) \cdot \frac{3 x+1}{(x-1) \cdot\left(x^{2}+1\right)} & =\left[\frac{A}{(x-1)}+\frac{B x+C}{x^{2}+1}\right](x-1) \cdot\left(x^{2}+1\right) \\
3 x+1 & =\mathrm{A}\left(x^{2}+1\right)+(B x+C)(x-1)
\end{aligned}
$$

2a) Set $x=1$ to isolate A.

$$
\begin{aligned}
3(1)+1 & =\mathrm{A}\left(1^{2}+1\right)+(\mathrm{B}(1)+\mathrm{C})(1-1) \\
3+1 & =\mathrm{A}(1+1)+(\mathrm{B}+\mathrm{C})(0) \\
4 & =\mathrm{A}(2) \\
2 & =\mathrm{A}
\end{aligned}
$$

2b) Set $A=2$ and $x=0$ to isolate C

$$
\begin{aligned}
3(0)+1 & =2\left(0^{2}+1\right)+(\mathrm{B}(0)+\mathrm{C})(0-1) \\
1 & =2(1)+\mathrm{C}(-1) \\
1 & =2-\mathrm{C} \\
1-2 & =-\mathrm{C} \\
1 & =\mathrm{C}
\end{aligned}
$$

2c) Set $A=2, C=1$ and $x=2$ (this is arbitrary, meaning you can choose whatever value you want for x) to get B

$$
\begin{aligned}
3(2)+1 & =2\left(2^{2}+1\right)+(B(2)+1)(2-1) \\
6+1 & =2(4+1)+(2 B+1)(1) \\
7 & =2(5)+2 B+1 \\
7 & =10+2 B+1 \\
7 & =11+2 B \\
7-11 & =2 B \\
-4 & =2 B \\
-2 & =B
\end{aligned}
$$

3) Now you have the constants, so you can write the final form as

$$
\frac{3 x+1}{(x-1) \cdot\left(x^{2}+1\right)}=\frac{2}{x-1}+\frac{-2 x+1}{x^{2}+1}
$$

