You're told $3 \sin (x)+3 \cos (y)-2 \sin (x) \cos (y)+x=4 \pi$

You have to find the slope at $\left(4 \pi, \frac{3 \pi}{2}\right)$

1) Use implicit differentation. Be sure to differnetiate terms with y using the chain rule.

$$
\frac{d}{d x}(3 \sin (x)+3 \cos (y)-2 \sin (x) \cos (y)+x)=\frac{d}{d x}(4 \pi) \quad \text { Setup the derivative }
$$

2) Now differentiate each term on both sides with respect to x. Use the chain rule on $\cos (y)$ and the product and chain rules on $-2 \sin (x) \cos (y)$
$3 \cos (x)-3 \sin (y) y^{\prime}-2\left(\cos (x) \cos (y)+\sin (x)\left(-\sin (y) y^{\prime}\right)\right)+1=0$
3) Distribute the -2 into the parenthesis to prepare for solving for y^{\prime}.

$$
3 \cos (x)-3 \sin (y) y^{\prime}-2 \cos (x) \cos (y)+2 \sin (x) \sin (y) y^{\prime}+1=0
$$

4) Now move terms without y^{\prime} to the right side.

$$
-3 \sin (y) y^{\prime}+2 \sin (x) \sin (y) y^{\prime}=-1+2 \cos (x) \cos (y)-3 \cos (x)
$$

5) Now factor y^{\prime} from each term on the left.

$$
y^{\prime}(-3 \sin (y)+2 \sin (x) \sin (y))=-1+2 \cos (x) \cos (y)-3 \cos (x)
$$

6) Now divide both sides by the expression on y^{\prime}

$$
y^{\prime}=\frac{-1+2 \cos (x) \cos (y)-3 \cos (x)}{-3 \sin (y)+2 \sin (x) \sin (y)}
$$

7) Now evaluate this ungodly mess at the point stated in the question:

$$
y^{\prime}\left(4 \pi, \frac{3 \pi}{2}\right)=\frac{-1+2 \cos (4 \pi) \cdot \cos \left(\frac{3 \pi}{2}\right)-3 \cos (4 \pi)}{-3 \sin \left(\frac{3 \pi}{2}\right)+2 \sin (4 \pi) \cdot \sin \left(\frac{3 \pi}{2}\right)}=\frac{-1+2(1) \cdot(0)-3 \cdot(1)}{-3(-1)+2 \cdot 0 \cdot-1}=\frac{-1-0-3}{3}=\frac{-4}{3}
$$

8) Therefore the slope is $\frac{-4}{3}$.
