www.tomsmath.com

- 1) Convert $r = 3\cos(\theta)$ to rectangular form.
- 2) Multiply both sides by r:

2a) $\mathbf{r} \cdot \mathbf{r} = \mathbf{r} \cdot 3 \cdot \cos(\theta)$ setup the multiplication

2b) $r^2 = 3 r \cos(\theta)$ complet the mutiplication

3) Replace $rcos(\theta)$ with x and r^2 with $x^2 + y^2$

$$x^2 + y^2 = 3x$$

4) Move the 3x to the left with subtraction $x^{2} - 3x + y^{2} = 0$

5) Complete the square on the left.

$$\left(x - \frac{3}{2}\right)^2 - \frac{9}{4} + y^2 = 0$$

6) Move the $\frac{-9}{4}$ to the right side.

$$\left(x - \frac{3}{2}\right)^2 + y^2 = \frac{9}{4}$$

7) Identify this as a circle centered at $\left(\frac{3}{2}, 0\right)$ with radius $\sqrt{\frac{9}{4} = \frac{3}{2}}$

1) Complete the square means rewrite $x^2 - 3x$ as

$$\left(x-\frac{3}{2}\right)^2-\frac{9}{4}$$