www.tomsmath.com

Find the derivative of $f(x)=e^{x}$

- 1) First copy the part that's $e^{\frac{1}{x}}$, and then differentiate $\frac{1}{x}$
- 2) $f'(x) = e^{\frac{1}{x}} \frac{d}{dx} \left(\frac{1}{x}\right)$ This is the chain rule.
- 3) $f'(x) = e^{\frac{1}{x}} \frac{d}{dx} x^{-1}$ Rewrite $\frac{1}{x}$ to show the exponent of -1
- 4) $f'(x) = e^{\frac{1}{x}} (-1)(x^{-1-1})$ Bring the -1 down, and subtract 1 from the 1 in the exponent
- 5) $f'(x) = e^{x} (-1)(x^{-2})$ Complete the subtraction in the exponent
- 6) $f'(x) = \frac{-e^{x}}{x^2}$ Rewrite by placing the -1 in front and by rewriting x^{-2} in the bottom.