Find the derivative of $f(x)=e^{\frac{1}{x}}$

1) First copy the part that's $e^{\frac{1}{x}}$, and then differentiate $\frac{1}{x}$
2) $f^{\prime}(x)=e^{\frac{1}{x}} \frac{d}{d x}\left(\frac{1}{x}\right) \quad$ This is the chain rul e.
3) $f^{\prime}(x)=e^{\frac{1}{x}} \frac{d}{d x} x^{-1} \quad$ Rewrite $\frac{1}{x}$ to show the exponent of -1
4) $f^{\prime}(x)=e^{\frac{1}{x}}(-1)\left(x^{-1-1}\right) \quad$ Bring the -1 down, and subtract 1 from the 1 in the exponent
5) $f^{\prime}(x)=e^{\frac{1}{x}}(-1)\left(x^{-2}\right) \quad$ Complete the subtraction in the exponent
6) $f^{\prime}(x)=\frac{-e^{\frac{1}{x}}}{x^{2}}$

Rewrite by placing the - 1 in front and
by rewriting x^{-2} in the bottom.

