Find the derivative of $f(x)=x \cdot \sqrt{64-x^{2}}$

1) $f^{\prime}(x)=\frac{d}{d x}\left(x \cdot \sqrt{64-x^{2}}\right)$
2) Now you differentiate using the product and chain rules.

The product rule states that $(f(x) g(x))^{\prime}=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$.
The chain rule states that $\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) g^{\prime}(x)$

$$
f^{\prime}(x)=(1) \cdot \sqrt{64-x^{2}}+x \cdot \frac{1}{2}\left(64-x^{2}\right)^{\frac{-1}{2}} \cdot(-2 x)
$$

3) Now this has to be cleaned up.

$$
f^{\prime}(x)=\sqrt{64-x^{2}}+\frac{x}{2} \cdot(-2 x) \cdot \frac{1}{\sqrt{64-x^{2}}}
$$

$$
f^{\prime}(x)=\sqrt{64-x^{2}}-\frac{x^{2}}{\sqrt{64-x^{2}}}
$$

$$
f^{\prime}(x)=\frac{\sqrt{64-x^{2}} \cdot \sqrt{64-x^{2}}}{\sqrt{64-x^{2}}}-\frac{x^{2}}{\sqrt{64-x^{2}}}
$$

$$
f^{\prime}(x)=\frac{64-x^{2}-x^{2}}{\sqrt{64-x^{2}}}=\frac{64-2 x^{2}}{\sqrt{64-x^{2}}}
$$

