1) You're given that: $a=-i+j$ and $b=j$
2) $a \cdot b$ is the dot product between the two vectors.
3) Rewrite a using component form: $a=<-1,1>$
4) Rewrite b using component form: $b=<0,1>$
5) Apply the dot product definition: $a \cdot b=<-1,1><0,1>=(-1)(0)+(1)(1)=0+1=1$
6) To find the angle, proceed as shown below.

6a) Find the magnitude of a. That's $|a|=\sqrt{(-1)^{2}+(1)^{2}}=\sqrt{1+1}=\sqrt{2}$
6b) Find the magnitude of b. That's $|b|=\sqrt{1^{2}}=1$
7) Plug the values above into the relationship below for the cosine of the angle between them.

$$
\cos (y)=\frac{a \cdot b}{|a| \cdot|b|}=\frac{1}{\sqrt{2} \cdot 1}=\frac{1}{\sqrt{2}}
$$

8) Apply the inverse cosine on both sides to get the angle. You can rewrite $\frac{1}{\sqrt{2}}$ as $\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{2}}{2}$

$$
y=\cos ^{-1}\left(\frac{1}{\sqrt{2}}\right)=\cos \left(\frac{\sqrt{2}}{2}\right)=\frac{\pi}{4}
$$

9) To summarize, you can write $a \cdot b=1$ and the angle between the vectors is $\frac{\pi}{4}$

