You're given $f(x)=\frac{2 x+1}{x+2}$. You have to find the equation of the tangent line at $(1,1)$

$$
(x+2) \cdot \frac{d}{d x}(2 x+1)-(2 x+1) \cdot \frac{d}{d x}(x+2)
$$

1) Find the derivative using the quotient rule: $f^{\prime}(x)=$

$$
(x+2)^{2}
$$

1a) take the derivatives

$$
=\frac{(x+2) \cdot(2)-(2 x+1)(1)}{(x+2)^{2}}
$$

1b)distribute

$$
=\frac{2 x+4-2 x-1}{(x+2)^{2}}
$$

1c) simplify

$$
=\frac{3}{(x+2)^{2}}
$$

2) Evaluate this at $x=1$:

$$
f^{\prime}(1)=\frac{3}{(1+2)^{2}}=\frac{3}{3^{2}}=\frac{3}{3 \cdot 3}=\frac{1}{3}=\frac{1}{3}
$$

3) Write the equation of the tangent:

$$
\begin{array}{ll}
y-1=\frac{1}{3}(x-1) & \text { setup } \\
y-1=\frac{1}{3} x-\frac{1}{3} & \text { distribute the } \frac{1}{3} \\
y=\frac{1}{3} x-\frac{1}{3}+1 & \text { add } 1 \text { to both sides }
\end{array}
$$

$$
y=\frac{1}{3} x-\frac{1}{3}+\frac{3}{3} \quad \text { rewrite } 1 \text { as } \frac{3}{3}
$$

$$
y=\frac{1}{3} x+\frac{2}{3}
$$

