$\frac{3}{x}+\frac{4}{y}=\frac{5}{2}$
$\frac{-5}{x}+\frac{3}{y}=\frac{-7}{4}$

1) Multiply the first equation by 3 to get: $\frac{9}{x}+\frac{12}{y}=\frac{15}{2}$
2) Multiply the second equation by $-4: \quad \frac{20}{x}-\frac{12}{y}=\frac{28}{4}$
3) Add the equations together to get rid of $\frac{12}{y}$ and $\frac{-12}{y}: \frac{9}{x}+\frac{12}{y}+\frac{20}{x}-\frac{12}{y}=\frac{15}{2}+\frac{28}{4}$
4) Simplify the left side :

$$
\frac{9}{x}+\frac{20}{x}=\frac{30}{4}+\frac{28}{4}
$$

5) Add the left side fractions, and the right side fractions:

$$
\frac{29}{x}=\frac{58}{4}
$$

6) Cross multiply:

$$
4 \cdot 29=58 \cdot x
$$

7) Divide both sides by 58:

$$
\frac{116}{58}=x \quad \text { so } x=2
$$

8) Once you know $x$ is 2, you get $y$ from plugging into the first equation, for example: $\frac{3}{2}+\frac{4}{y}=\frac{5}{2}$
9) At this point, subtract $\frac{3}{2}$ from both sides, and solve for $y$ :

$$
\begin{gathered}
\frac{4}{y}=\frac{5}{2}-\frac{3}{2} \\
\frac{4}{y}=\frac{2}{2} \\
\frac{4}{y}=1 \\
4=y
\end{gathered}
$$

10) So the point that solves the system is $(2,4)$.
