Find a line perpendicular to $x-6 y=2$, and passing through the point $(2,4)$.

1) Perpendicular lines have slopes that are negative reciprocals. This means we solve for the slope in $x-6 y=2$, and then form the negative reciprocal.

$$
\begin{array}{rl}
x-6 y=2 & \text { Original equation } \\
-6 y=-2-x & x \text { moved to the right with subtraction } \\
y=\frac{-2}{-6}-\frac{x}{-6} & \text { Divide both sides by }-6 \\
y=\frac{1}{3}+\frac{1}{6} x & \frac{-2}{-6}=\frac{-2 \cdot 1}{-2 \cdot 3}=\frac{1}{3} \text { and rewrite } \frac{-x}{-6} \text { as } \frac{x}{6}=\frac{1}{6} x
\end{array}
$$

2) Now form the negative reciprocal of $\frac{1}{6}$ as $\frac{-6}{1}=-6$
3) Now use the point slope formula to find the equation of the perpendicular line.

Formula: $y-y_{0}=m\left(x-x_{0}\right)$
Identify m as $-6, x_{0}=2$ and $y_{0}=4$. Plug these into the formula.

$$
\begin{aligned}
y-4 & =-6(x-2) & & \text { Setup the equation } \\
y-4 & =-6 x+12 & & \text { Distribute the }-6 \\
y & =-6 x+12+4 & & \text { Move the } 4 \text { to the right with addition. } \\
y & =-6 x+16 & & \text { Simplify }
\end{aligned}
$$

