Show that the equation $2 x a^{2}-\sqrt{b y}+(2+\sqrt{a}) z=b^{2}$ is linear.

1) x means x^{1} and z means z^{1}, so this equation is linear in these variables.
2) The $2, a^{2},-\sqrt{b y},(2+\sqrt{a})$ and b^{2} are just fancy ways of writing constants.

2a) For example, you could set $a=1, b=1, y=1$, you'd have a linear equation.

$$
\begin{gathered}
2 x(1)^{2}-\sqrt{(1)(1)}+(2+\sqrt{1}) z=1^{2} \\
2 x-1+3 z=1 \\
2 x+3 z=2
\end{gathered}
$$

