www.tomsmath.com
$y=x^{2}-3 x \quad$ You're given $x=1$ and $\frac{d y}{d t}=5$
Find $\frac{d x}{d t}$

First observe that x is really a function of t. y is also a function of t. This means you can rewrite to clearly illustrate that x depends on t. Once you have it in this form, you can differentiate using the chain rule.
$y(t)=x(t)^{2}-3 x(t) \quad$ rewrite this way
$\frac{d y}{d t}=2 x(t) \frac{d x}{d t}-3 \frac{d x}{d t} \quad$ differntiate using the chain rule and isolate $\frac{d x}{d t}$
$\frac{d y}{d t}=(2 x(t)-3) \frac{d x}{d t} \quad$ factor $\frac{d x}{d t}$ from the parenthesis
$5=(2(1)-3) \frac{d x}{d t} \quad$ replace $\frac{d y}{d t}$ with 5 , and $x(t)$ with 1 as given in the statement of the problem
$5=(2-3) \frac{d x}{d t}$
$5=-1 \times \frac{d x}{d t}$
$2-3$ is -1
$-5=\frac{d x}{d t}$
divide both sides by -1 to get that $\frac{d x}{d t}=-5$

