www.tomsmath.com
Assuming you're given $v=k x^{\frac{-1}{2}} \cdot y^{\frac{1}{2}} \cdot z^{\frac{-1}{2}}$

1) Rewrite with root symbols: $\quad v=k \cdot \frac{1}{\sqrt{x}} \cdot \sqrt{y} \cdot \frac{1}{\sqrt{z}}$
2) Now you can rewrite again: $\quad v=k \cdot \sqrt{\frac{y}{x}} \cdot \frac{1}{\sqrt{z}}$
3) Now you can rewrite again: $\quad v=k \cdot \sqrt{\frac{y}{x z}}$
4) If you want to solve for k, proceed as shown: $\quad v=k \cdot \frac{\sqrt{y}}{\sqrt{x z}} \quad$ break the root symbol into two
5) Multiply both sides by $\frac{\sqrt{x z}}{\sqrt{y}}$. This will isolate k on the right. $\frac{\sqrt{x z} \cdot v}{\sqrt{y}}=k$
6) Now rewrite again:

$$
k=v \sqrt{\frac{x z}{y}}
$$

