Find the value of the function at the given point, and then sketch the gradient vector, and the contour curve passing through that point.

1) $f(x, y)=y+x \quad$ at
a) Evaluate the function first at $(2,1): \quad f(2,1)=1+2=3$

This value becomes the level or contour curve.
b) Set the function equal to 3, and plot the level curve.

$$
f(x, y)=3 \quad \Rightarrow x+y=3
$$

To plot this level curve, use x and y intercepts.
Set $y=0$ to get the x intercept.
$x=3$

c) Form the gradient by taking the partials, and putting them in a vector.

$$
\nabla f(x, y)=\left\langle\frac{\partial}{\partial x}(y+x), \frac{\partial}{\partial y}(y+x)\right\rangle=\langle 1,1\rangle
$$

d) Evaluate the gradient at the given point.
$\nabla f(2,1)=\langle 1,1\rangle$

In this problem, the gradient is constant. This simply means that the x component of the gradient, which is the slope along the x axis, is always 1 . Also, the y component of the gradient is also 1 , so the slope in the y direction is also always 1 .

