Find the maximum of $f(x)=\frac{-1}{2} x^{2}+4 x+13$

1) The maximum occurs where the first derivative is 0 .
2) $f^{\prime}(x)=\frac{d}{d x}\left(\frac{-1}{2} x^{2}+4 x+13\right)$

Setup the deriv ativ e
$=\frac{d}{d x}\left(\frac{-1}{2} x^{2}\right)+\frac{d}{d x}(4 x)+\frac{d}{d x}(13) \quad$ Distribute the derivative across the parenthesis
$=\frac{-1}{2}(2) x^{2-1}+4$
$=\frac{-2}{2} x+4$

$$
=-x+4
$$

Apply the power rule. Bring the 2 down, and
subtract 1 from the exponent.

Now you have the derivative.
3) Set the derivative equal to zero, and solve for the critical value.
$-x+4=0$
Set $f^{\prime}(x)=0$
$-x=-4$
$x=4$
Divide both sides by -1
4) Differentiate again to look at the second derivative.

$$
f^{\prime}(x)=\frac{d}{d x} f^{\prime}(x)=-1
$$

Because the second derivative is negative, $x=4$ is where the maximum value occurs.
5) To find the maximum value, evaluate the function at $x=4$

$$
\begin{aligned}
f(4) & =\frac{-1}{2} 4^{2}+4(4)+13 & & \text { Replace } x \text { with } 4 \\
& =\frac{-1}{2} \cdot 16+16+13 & & \text { Square } 4 \\
& =-8+16+13 & & \text { Divide } 16 \text { by } 2 \text { to get } 8 \\
& =21 & & \text { Add }
\end{aligned}
$$

