Table of function values and derivative values.

x	-2	-1	0	1	2	3	Row 1
$f^{\prime}(x)$	4	$\frac{2}{3}$	$-\frac{1}{3}$	-1	-2	-4	Row 2
$g^{\prime}(x)$	4	$\frac{2}{3}$	$-\frac{1}{3}$	-1	-2	-4	Row 3
$h^{\prime}(x)$	can't find	-12	1	can't find	can't find	can't find	Row 4

a) $g(x)=f(x)-2$

The derivative of $g(x)$ is $g^{\prime}(x)=\frac{d}{d x}(f(x)-2)=\frac{d}{d x} f(x)-\frac{d}{d x}(2)=f^{\prime}(x)$
This means the third row has the same values as the first row.
b) $h(x)=f(-3 x)$. To differntiate this, you have to use the chain rule.

1) $h^{\prime}(x)=\frac{d}{d x} f(-3 x)=f^{\prime}(-3 x)(-3)=-3 f^{\prime}(-3 x)$ chain rule
2) At $x=-2$, we have $h^{\prime}(-2)=-3 f^{\prime}(-3(-2))=-3 f^{\prime}(6)$.

We stop here because we don't know $f^{\prime}(6)$.
3) At $x=-1$, we have $h^{\prime}(-1)=-3 f^{\prime}(-3(-1))=-3 f^{\prime}(3)=-3(-4)=-12$
4) At $x=0$, we have $h^{\prime}(0)=-3 f^{\prime}(0)=-3\left(\frac{-1}{3}\right)=1$
5) The other v al ues can't befound, as in 2) above.

