www.tomsmath.com

Table of function values and derivative values.

x	-2	-1	0	1	2	3	Row 1
f'(x)	4	2 3	<u> </u> 3	-1	-2	-4	Row 2
g'(x)	4	$\frac{2}{3}$	<u>-1</u> 3	-1	-2	-4	Row 3
h'(x)	can't find	-12	1	can't find	can't find	can't find	Row 4

a) g(x)=f(x)-2

The derivative of g(x) is g'(x) =
$$\frac{d}{dx}(f(x)-2) = \frac{d}{dx}f(x) - \frac{d}{dx}(2) = f'(x)$$

This means the third row has the same values as the first row.

b) h(x)=f(-3x). To differntiate this, you have to use the chain rule.

1)
$$h'(x) = \frac{d}{dx} f(-3x) = f'(-3x)(-3) = -3f'(-3x)$$
 chain rule

2) At x=-2, we have h'(-2)=-3f'(-3(-2))=-3f'(6).
We stop here because we don't know f'(6).

3) At x=-1, we have
$$h'(-1)=-3f'(-3(-1))=-3f'(3)=-3(-4)=-12$$

4) At x=0, we have
$$h'(0) = -3f'(0) = -3\left(\frac{-1}{3}\right) = 1$$

5) The other values can't be found, as in 2) above.