Find the following limit:
$\lim _{x \rightarrow 0} \frac{e^{x}-1-x}{x^{2}}$

1) First we check what happens if we could plug 0 into the functions. In this case, we have an indeterminate form.

$$
\frac{e^{0}-1-0}{0^{2}}=\frac{1-1}{0}=\frac{0}{0}
$$

This is an indeterminate form. Remember that plugging 0 into the functions is not actually legal mathematically, but we do it in order to get a feel for what we should do.
2) Because we have an indeterminate form, we apply L'Hopital.
$\lim _{x \rightarrow 0} \frac{e^{x}-1-x}{x^{2}}=\lim _{x \rightarrow 0} \frac{\frac{d}{d x}\left(e^{x}-1-x\right)}{\frac{d}{d x}\left(x^{2}\right)}=\lim _{x \rightarrow 0} \frac{e^{x}-1}{2 x}$
3) We replace x with 0 , and check again.
$\frac{e^{0}-1}{2(0)}=\frac{1-1}{0}=\frac{0}{0}$
This is an indeterminate form again. So apply L'Hopital again.
4) Differentiate top and bottom, as before, and check.
$\lim _{x \rightarrow 0} \frac{\frac{d}{d x}\left(e^{x}-1\right)}{\frac{d}{d x}(2 x)}=\lim _{x \rightarrow 0} \frac{e^{x}}{2}$
Now we can replace x with 0 , and find that the limit is
$\lim _{x \rightarrow 0} \frac{e^{x}}{2}=\frac{1}{2} \lim _{x \rightarrow 0} e^{x}=\frac{1}{2}\left(e^{0}\right)=\frac{1}{2}(1)=\frac{1}{2}$

