www.tomsmath.com $f(x) = \ln\left(x \cdot \sqrt{x^2 - 1}\right)$ 1) $f(x) = \ln(x) + \ln\left(\sqrt{x^2 - 1}\right)$ rewrite using the fact that $\ln(f(x)g(x)) = \ln(f(x)) + \ln(g(x))$ 2) $f'(x) = \frac{d}{dx} \ln(x) + \frac{d}{dx} \ln\left(\sqrt{x^2 - 1}\right)$ Apply the derivative symbol to each term individually 3) $\frac{d}{dx} \ln(x) = \frac{1}{x}$ this is the easy one 4) $\frac{d}{dx} \ln\left(\sqrt{x^2 - 1}\right) = \frac{d}{dx} \ln\left[\left(x^2 - 1\right)^{\frac{1}{2}}\right] = \frac{1}{2} \cdot \frac{d}{dx} \cdot \ln\left(x^2 - 1\right)$ Put $\frac{1}{2}$ in front using a rule of logs $\ln\left(x^2\right) = a\ln(x)$

5) Now use the chain rule:
$$\frac{1}{2} \cdot \frac{d}{dx} \ln \left(x^2 - 1 \right) = \frac{1}{2} \cdot \frac{1}{x^2 - 1} \cdot \left[\frac{d}{dx} \left(x^2 - 1 \right) \right] = \frac{1}{2} \cdot \frac{1}{x^2 - 1} \cdot 2x = \frac{2}{2} \cdot \frac{x}{x^2 - 1} = \frac{x}{x^2 - 1}$$

6) Now add the results of steps 3) and 5) together to get the final derivative: $f'(x) = \frac{1}{x} + \frac{x}{x^2 - 1}$

7) Rewrite the final expression on the right by getting a common denominator:

7a) This means
$$\frac{1}{x}$$
 has to be multiplied by $\frac{x^2 - 1}{x^2 - 1}$ to get $\frac{x^2 - 1}{x(x^2 - 1)}$

7b) This means
$$\frac{x}{x^2-1}$$
 has to be multiplied by $\frac{x}{x}$ to get $\frac{x \cdot x}{x(x^2-1)} = \frac{x^2}{x(x^2-1)}$

8) Now combine these two to get
$$f'(x) = \frac{x^2 - 1}{x(x^2 - 1)} + \frac{x^2}{x(x^2 - 1)} = \frac{x^2 - 1 + x^2}{x(x^2 - 1)} = \frac{2x^2 - 1}{x(x^2 - 1)}$$

Note: Fight on!! You don't know what you can do until you give everything you've got, which is way more than you think!!