www.tomsmath.com
$f(x)=\ln \left(x \cdot \sqrt{x^{2}-1}\right)$

1) $f(x)=\ln (x)+\ln \left(\sqrt{x^{2}-1}\right)$ rewrite using the fact that $\ln (f(x) g(x))=\ln (f(x))+\ln (g(x))$
2) $f^{\prime}(x)=\frac{d}{d x} \ln (x)+\frac{d}{d x} \ln \left(\sqrt{x^{2}-1}\right) \quad$ Apply the derivative symbol to each term individually
3) $\frac{d}{d x} \ln (x)=\frac{1}{x}$
this is the easy one
4) $\frac{d}{d x} \ln \left(\sqrt{x^{2}-1}\right)=\frac{d}{d x} \ln \left[\left(x^{2}-1\right)^{\frac{1}{2}}\right]=\frac{1}{2} \cdot \frac{d}{d x} \cdot \ln \left(x^{2}-1\right) \quad$ Put $\frac{1}{2}$ in front using a rule of $\operatorname{logs} \ln \left(x^{a}\right)=a \ln (x)$
5) Now use the chain rule: $\frac{1}{2} \cdot \frac{d}{d x} \ln \left(x^{2}-1\right)=\frac{1}{2} \cdot \frac{1}{x^{2}-1} \cdot\left[\frac{d}{d x}\left(x^{2}-1\right)\right]=\frac{1}{2} \cdot \frac{1}{x^{2}-1} \cdot 2 x=\frac{2}{2} \cdot \frac{x}{x^{2}-1}=\frac{x}{x^{2}-1}$
6) Now add the results of steps 3) and 5) together to get the final derivative: $f^{\prime}(x)=\frac{1}{x}+\frac{x}{x^{2}-1}$
7) Rewrite the final expression on the right by getting a common denominator:

7a) This means $\frac{1}{x}$ has to be multiplied by $\frac{x^{2}-1}{x^{2}-1}$ to get $\frac{x^{2}-1}{x\left(x^{2}-1\right)}$

7b) This means $\frac{x}{x^{2}-1}$ has to be multiplied by $\frac{x}{x}$ to get $\frac{x \cdot x}{x\left(x^{2}-1\right)}=\frac{x^{2}}{x\left(x^{2}-1\right)}$
8) Now combine these two to get $f^{\prime}(x)=\frac{x^{2}-1}{x\left(x^{2}-1\right)}+\frac{x^{2}}{x\left(x^{2}-1\right)}=\frac{x^{2}-1+x^{2}}{x\left(x^{2}-1\right)}=\frac{2 x^{2}-1}{x\left(x^{2}-1\right)}$

Note: Fight on!! You don't know what you can do until you give everything you've got, which is way more than you think!!

