Partial fraction decomposition of $\frac{1}{x^{2}-5 x+6}$

1) First factor the bottom, as shown.

$$
\frac{1}{(x-3) \cdot(x-2)}
$$

2) Now we see the denomiatnor is a product of two linear factors.

2a) Write the setup for partial fractions.

$$
\frac{1}{(x-3) \cdot(x-2)}=\frac{A}{(x-3)}+\frac{B}{(x-2)}
$$

2b) Multiply both sides by (x-3)(x-2). This will clear the denominator on the left.

$$
\begin{gathered}
(x-3)(x-2) \cdot \frac{1}{(x-3) \cdot(x-2)}=\left[\frac{A}{(x-3)}+\frac{B}{(x-2)}\right] \cdot(x-3)(x-2) \\
\frac{(x-3)(x-2)}{(x-3) \cdot(x-2)} \cdot 1=\frac{A}{x-3} \cdot(x-3) \cdot(x-2)+\frac{B}{(x-2)} \cdot(x-3) \cdot(x-2) \\
1=A(x-2)+B(x-3)
\end{gathered}
$$

3) Now you can solve for each of A and B.

Set $x=2$. This will give you B.
Set $x=3$. This will give you A.

$$
\begin{array}{rl}
1=\mathrm{A}(2-2)+\mathrm{B}(2-3) & 1=\mathrm{A}(3-2)+\mathrm{B}(3-3) \\
1=\mathrm{A}(0)-\mathrm{B} & 1=\mathrm{A}(1)+\mathrm{B}(0) \\
1=-\mathrm{B} & 1=\mathrm{A} \\
-1=\mathrm{B} &
\end{array}
$$

4) Now you can write the partial fraction decomposition as shown.

$$
\frac{1}{x^{2}-5 x+6}=\frac{1}{x-3}-\frac{1}{x-2}
$$

