Solve $\log _{3}(x-2)=15-\log _{2}(x) \quad$ Assuming these are the correct bases.

1) Convert the logs with different bases to all natural logs as shown.

$$
\frac{\ln (x-2)}{\ln (3)}=15-\frac{\ln (x)}{\ln (2)} \quad \text { Rewrite each log using the conversion formula }
$$

2) Now you can graph the left side and right sides, and see whether they meet. This is an approximate answer.
3) On your calculator, define $y_{1}=\frac{\ln (x-2)}{\ln (3)}$
4) On your calculator, define $y_{2}=15-\frac{\ln (x)}{\ln (2)}$
5) Carefully going through the graph using a trace feature shows $x \approx 587.771$

