Find a unit vector in the direction of $u=<-2,4>$

1) First find the magnitude of u using the Pythagorean Theorem.

$$
\begin{aligned}
\text { magnitude of } u & =\sqrt{(-2)^{2}+(4)^{2}} & & \text { Pythagorean Theorem } \\
& =\sqrt{4+16} & & \text { Square } \\
& =\sqrt{20} & & \text { Add } \\
& =\sqrt{4 \cdot 5} & & \text { Rewrite } 20 \text { as } 4 \text { times } 5 \\
& =\sqrt{4} \cdot \sqrt{5} & & \text { Apply a basic rule of roots } \\
& =2 \sqrt{5} & & \text { The square root of } 4 \text { is } 2
\end{aligned}
$$

2) Now divide the vector u by its magnitude to find the unit vector along u.
unit vector $=\frac{-2,4>}{2 \sqrt{5}}$
$=<\frac{-2}{2 \sqrt{5}}, \frac{4}{2 \sqrt{5}}>$
$=<\frac{-1}{\sqrt{5}}, \frac{2}{\sqrt{5}}>$
$=<\frac{-1}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}, \frac{2}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}>$ Setup the rationalization
$=<\frac{-\sqrt{5}}{5}, \frac{2 \sqrt{5}}{5}>\quad$ Complete the rationalization
