Find $\int e^{2 x} d x$

1) This is found using u substitution. Proceed as shown along the arrows.

2) Now factor the $\frac{1}{2}$ out of the integral because it's constant.

$$
\int \frac{1}{2} e^{u} d u=\frac{1}{2} \int e^{u} d u
$$

3) Now antidifferentiate using the basic rule for the natural exponential function.

$$
\frac{1}{2} \int e^{u} d u=\frac{1}{2} e^{u}+C
$$

4) Now replace u back with $2 x$ to g, the final form.

$$
\int e^{2 x} d x=\frac{1}{2} e^{2 x}+C
$$

