Find the volume of the region obtained between the curve $y=\sqrt{x}$, the x axis, $x=1$ and $x=2$.

1) First sketch the curve $y=\sqrt{x}$ betwen $x=1$ and $x=2$.

2) Draw a disk. The height of this disk is $d x$, roughly, and radius is, roughly, \sqrt{x}.

3) Now we can use the disk method of integration to find the volume.

$$
\begin{aligned}
\text { Volume } & =\int_{1}^{2} \pi(\sqrt{x})^{2} d x & & \text { Apply the definition of the disk method } \\
& =\pi \int_{1}^{2} \sqrt{x}^{2} d x & & \text { Factor } \pi \text { out } \\
& =\pi \int_{1}^{2} x d x & & \sqrt{x}^{2}=\left(x^{\frac{1}{2}}\right)^{2}=x^{\frac{2}{2}}=x^{1}=x \\
& \left.=\pi \frac{1}{2} x^{2}\right]_{1}^{2} & & \text { Apply the power rule for integrals } \\
& =\pi \cdot \frac{1}{2}\left(2^{2}-1^{2}\right) & & \text { Setup the evaluation between the limits } \\
& =\pi \cdot \frac{1}{2}(4-1) & & \text { Simplify within parenthesis } \\
& =\frac{3 \pi}{2} & & \text { Rewrite to make it look more clean }
\end{aligned}
$$

