Solving a simple system using the method of substitution.
Example:
Eq1.: $\quad y=4 x$
Eq2.: $x+y=10$

1) In Eq2., replace y with the $4 x$ because that is how it's defined in Eq1.
$x+(4 x)=10 \quad$ Replace y with $4 x$
$x+4 x=10 \quad$ Drop the parenthesis.
$5 x=10 \quad$ Add $1 x$ and $4 x$ to get $5 x$ on the left
$x=2 \quad$ Divide both sides by 5 to get $x=2$
2) Now we can use Eq1., which is $y=4 x$, to find the value of y.
$y=4(2)=8 \quad$ Replace x with 2 to get that $y=8$
3) This means that point $(2,8)$ solves the system. Check:
Eq1.: $\quad y=4 x$
Eq2.: $x+y=10$
Let's confirm that the point $(2,8)$ solves the system.
4) Check the first equation.

$$
8=2 \cdot 4
$$

2) Check the second equation. $2+8=10$

$$
8=8
$$

$10=10$

So this confirms that the poreo $(2,8)$ solves the system.

Solving a simple system using the method of substitution.
Example:
Eq1.: $\quad y=x+1$
Eq2.: $x+2 y=10$

1) Replace y in the second equation with the expression $x+1$

1a) $x+2(x+1)=10 \quad$ This is the step of substitution
1b) $x+2 x+2=10 \quad$ Distribute the 2 into the parenthesis on the left.
1c) $\quad 3 x+2=10 \quad$ Combine like terms on the left side.
1d) $\quad 3 x=10-2$ Subtract 2 from both sides

$$
3 x=8
$$

1e) $x=\frac{8}{3} \quad$ Divide both sides by 3 to get the final result for x.
2) Now we can use Eq1. to find the corresponding value of y.

2a) $y=\frac{8}{3}+1 \quad$ Replace x with $\frac{8}{3}$ in Eq1.

$$
=\frac{8}{3}+\frac{3}{3} \quad \text { Change the number } 1 \text { into } \frac{3}{3} \text { so you can add easily }
$$

$=\frac{11}{3}$
3) So now we can say that the point $\left(\frac{8}{3}, \frac{11}{3}\right)$ s ol ves the s ystem

Example:
Eq1.: $\quad x+y=2$
Eq2.: $2 x+y=10$

1) Solve Eq1. for x or y. It doesn't matter. So we choose x.
1a) $x+y=2 \quad$ Original equation

1b) $\quad x=2-y \quad$ Subtract y from both sides
2) In Eq2., replace x with the expression 2-y.

2a) $2(2-y)+y=10$ This is the step of substitution.
2b) $4-2 y+y=10$ Distribute the 2 into the parenthesis
2c) $\quad 4-y=10 \quad$ Combine like terms on the left side
2d) $\quad-y=6 \quad$ Subtract 4 from both sides
2e) $\quad y=-6 \quad$ Divide both sides by -1 to get $y=-6$
3) Now that we know y, we have to solve for x. We can do this by making use of equation $1 b$), which says $x=2-y$ $x=2-(-6)=2+6=8 \quad$ Replace y with -2 and simplify to get x
4) At this point, we can say the point $(8,-6)$ solves the system.

