www.tomsmath.com

- 1) The equation $2x+y-z=\cos(3)$ is linear in each of x, y and z. $\cos(3)$ is just a fancy way of writing a number. Each of the variables is really x^{1} , y^{1} and z^{1} . Also, you can solve for x, or y, or z. This is a literal equation.
- 2) The equation $3x+\log(3y)=5$ is not linear. For example, if you solved for y, you'd get

log(3y)=5-3x subtract 3x

 $10^{\log(3y)} = 10^{5-3x}$ exponentiate both sides

 $3y=10^{5-3x}$ 10 and log and inverses, so they cancel

$$y = \frac{10^{5-3x}}{3}$$
 Divide by 3

3) $\sqrt{2}x + y - z = 2$ Each variable is raised to the first, so it's linear. $\sqrt{2}$ is just a number. You can solve for x, or y, or z. None is more important.

4) x+y<2 This is an inequality, and not an equation. But it's linear because it's x^{1} and y^{1} .