1) The equation $2 x+y-z=\cos (3)$ is linear in each of x, y and z. $\cos (3)$ is just a fancy way of writing a number. Each of the variables is really x^{1}, y^{1} and z^{1}. Also, you can solve for x, or y, or z. This is a literal equation.
2) The equation $3 x+\log (3 y)=5$ is not linear. For example, if you solved for y, you'd get

$$
\begin{array}{ll}
\log (3 y)=5-3 x & \text { subtract } 3 x \\
10^{\log (3 y)}=10^{5-3 x} & \text { exponentiate both sides } \\
3 y=10^{5-3 x} & 10 \text { and log and inverses, so they cancel } \\
y=\frac{10^{5-3 x}}{3} & \text { Divide by } 3
\end{array}
$$

3) $\sqrt{2} x+y-z=2 \quad$ Each variable is raised to the first, so it's linear. $\sqrt{2}$ is just a number. You can solve for x, or y, or z. None is more important.
4) $x+y<2$

This is an inequality, and not an equation. But it's linear because it's x^{1} and y^{1}.

