www.tomsmath.com Find the area between the curves $f(x)=x^{2}-4 x$ and $g(x)=2 x+7$

1) The height of the rectangle is $g(x)-f(x)=2 x+7-1\left(x^{2}-4 x\right)$
2) Simplify this expression first.
$g(x)-f(x)=2 x+7-x^{2}+4 x \quad$ Distribute the -1 in front of the parenthesis $g(x)-f(x)=-x^{2}+2 x+4 x+7$ Group like terms
$g(x)-f(x)=-x^{2}+6 x+7 \quad$ Add like terms. This is the integrand.
3) Find the limits of integration by solving for the two x 's where the curves meet.
$2 x+7=x^{2}-4 x \quad$ Setup the equation.
$-x^{2}+2 x+4 x+7=0 \quad$ Move terms from the right to the left
$-x^{2}+6 x+7=0 \quad$ Simplify by adding $2 x$ and $4 x$.
$x^{2}-6 x-7=0 \quad$ Divide the whole equation by -1 . This changes the signs.
$(x-7)(x+1)=0 \quad$ Factor the equation.
$x=7$ or $x=-1 \quad$ These are the limits of integration.

4) Setup the integral, and integrate using the power rule.

$$
\begin{aligned}
\int_{-1}^{7}-x^{2}+6 x+7 d x & \left.=\frac{-1}{3} x^{3}+3 x^{2}+7 x\right]_{-1}^{7} \\
& =\left(\frac{-1}{3} \cdot 7^{3}+3 \cdot 7^{2}+7(7)\right)-\left(\frac{-1}{3} \cdot(-1)^{3}+3 \cdot(-1)^{2}+7(-1)\right) \\
& =\left(\frac{-1}{3}(343)+3 \cdot 49+49\right)-\left(\frac{1}{3}+3-7\right) \\
& =\frac{-343}{3}+147+49-\frac{1}{3}-3+7 \\
& =\frac{-343}{3}+\frac{441}{3}+\frac{147}{3}-\frac{1}{3}-\frac{9}{3}+\frac{21}{3} \\
& =\frac{256}{3}
\end{aligned}
$$

(Whew!! Finally!) I know how you feel:)

